- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Warner, Daniel A (2)
-
Wayne, Sydney M (2)
-
De_Carvalho, José Eduardo (1)
-
Gilbert, Anthony L (1)
-
Medeiros_De_Andrade, Thayná (1)
-
Muell, Morgan R (1)
-
Norris, Mike C (1)
-
Rodgers, John M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Nest-site choice influences offspring development and varies in response to specific environmental cues. For species that inhabit coastal regions, salinity of the nest site is probably an important factor for nesting females, whereas this cue is likely to be rare or absent for inland populations. We compared nest-site choice of brown anole lizards (Anolis sagrei) between an island population (that frequently experiences seawater inundation) and an inland population (that rarely, if ever, experiences inundation). We hypothesized that island females would avoid nesting in saline soils more than inland females, because it impairs egg hatching success. We provided females from each population with two different nesting substrates (soil mixed with freshwater vs. saltwater). We incubated their eggs in these conditions to quantify the effects on embryo survival. Island females tended to avoid nesting in saltwater soil, whereas inland females exhibited no preference. Water loss and mortality rates of eggs increased during incubation in soil with saltwater. These patterns imply that females from island populations, but not inland populations, might have adaptive behavioural responses to soil salinity. These results have important implications for understanding how coastal or island populations might respond to changes in salinity under climate change (e.g. sea level rise, increased hurricanes).more » « lessFree, publicly-accessible full text available September 1, 2026
-
Gilbert, Anthony L; Wayne, Sydney M; Norris, Mike C; Rodgers, John M; Warner, Daniel A (, Ecological and Evolutionary Physiology)Understanding the relationship between the environment parents experience during reproduction and the environment embryos experience in the nest is essential for determining the intergenerational responses of populations to novel environmental conditions. Thermal stress has become commonplace for organisms inhabiting areas affected by rising temperatures. Exposure to body temperatures that approach, but do not exceed, upper thermal limits often induces adverse effects in organisms, but the propensity for these temperatures to have intergenerational consequences has not been explored in depth. Here, we quantified the effects of thermal stress on the reproductive physiology and development of brown anoles (Anolis sagrei) when thermal stress is experienced by mothers and by eggs during incubation.Mothers exposed to thermal stress produced smaller eggs and smaller offspring with reduced growth rates, while egg stress reduced developmental time and offspring mass. Hatchling survival and growth were negatively affected by thermal stress experienced by mothers but not by thermal stress experienced as eggs. We found mixed evidence for an additive effect of thermal stress on offspring; rather, thermal stress had specific (and most often negative) effects on different components of offspring phenotypes and fitness proxies when experienced either by mothers or by eggs. Stressful body temperatures therefore can function in a similar manner to other types of maternal effects in reptiles; however, this maternal effect has predominantly negative consequences on offspring.more » « less
An official website of the United States government
